Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides

نویسندگان

  • Tony F. Chan
  • Wing Lok Wan
چکیده

We analyze a class of Krylov projection methods but mainly concentrate on a specific conjugate gradient (CG) implementation by Smith, Peterson, and Mittra [IEEE Transactions on Antennas and Propogation, 37 (1989), pp. 1490–1493] to solve the linear system AX = B, where A is symmetric positive definite and B is a multiple of right-hand sides. This method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a superconvergence behavior of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this paper, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Galerkin Projection Methods for Solving Multiple Linear Systems

In this paper, we consider using Galerkin projection methods for solving multiple linear systems A (i) x (i) = b (i) , for 1 i s, where the coeecient matrices A (i) and the right-hand sides b (i) are diierent in general. In particular, we focus on the seed projection method which generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed ...

متن کامل

A new seed projection method for solving shifted systems with multiple right-hand sides

In this paper, we propose a new seed projection method for solving shifted systems with multiple right-hand sides. This seed projection method uses a seed selection strategy. Numerical experiments are presented to show the efficiency of the newly method. Keywords—shifted systems, multiple right-hand sides, seed projection.

متن کامل

Smoothing iterative block methods for linear systems with multiple right-hand sides

In the present paper, we present smoothing procedures for iterative block methods for solving nonsymmetric linear systems of equations with multiple right-hand sides. These procedures generalize those known when solving one right-hand linear systems. We give some properties of these new methods and then, using these procedures we show connections between some known iterative block methods. Fina...

متن کامل

Block Bidiagonalization Methods for Solving Nonsymmetric Linear Systems with Multiple Right-hand Sides

Many applications require the solution of large nonsymmetric linear systems with multiple right-hand sides. Instead of applying an iterative method to each of these systems individually, it is often more eecient to use a block version of the method that generates iterates for all the systems simultaneously. In this paper, we propose block versions of Galerkin/minimal residual pair of bidiagonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997